發電機(英文名稱:Generators)是將其他形式的能源轉換成電能的機械設備,它由水輪機、汽輪機、柴油機或其他動力機械驅動,將水流,氣流,燃料燃燒或原子核裂變產生的能量轉化為機械能傳給發電機,再由發電機轉換為電能。發電機在工農業生產、國防、科技及日常生活中有廣泛的用途。
發電機的形式很多,但其工作原理都基于電磁感應定律和電磁力定律。因此,其構造的一般原則是:用適當的導磁和導電材料構成互相進行電磁感應的磁路和電路,以產生電磁功率,達到能量轉換的目的。
風力發電機是集電氣、機械、空氣動力學等各學科于一體的綜合產品,各部分緊密聯系,息息相關。風力機維護的好壞直接影響到發電量的多少和經濟效益的高低;風力機本身性能的好壞,也要通過維護檢修來保持,維護工作及時有效可以發現故障隱患,減少故障的發生,提高風機效率。
風機維護可分為定期檢修和日常排故維護兩種方式。
1.風機的定期檢修維護
定期的維護保養可以讓設備保持佳期的狀態,并延長風機的使用壽命。定期檢修維護工作的主要內容有:風機聯接件之間的螺栓力矩檢查(包括電氣連接),各傳動部件之間的潤滑和各項功能測試。
風機在正常運行中時,各聯接部件的螺栓長期運行在各種振動的合力當中,極易使其松動,為了不使其在松動后導致局部螺栓受力不均被剪切,我們必須定期對其進行螺栓力矩的檢查。在環境溫度低于-5℃時,應使其力矩下降到額定力矩的80%進行緊固,并在溫度高于-5℃后進行復查。我們一般對螺栓的緊固檢查都安排在無風或風小的夏季,以避開風機的高出力季節。
風機的潤滑系統主要有稀油潤滑(或稱礦物油潤滑)和干油潤滑(或稱潤滑脂潤滑)兩種方式。風機的齒輪箱和偏航減速齒輪箱采用的是稀油潤滑方式,其維護方法是補加和采樣化驗,若化驗結果表明該潤滑油已無法再使用,則進行更換。干油潤滑部件有發電機軸承,偏航軸承,偏航齒等。這些部件由于運行溫度較高,極易變質,導致軸承磨損,定期維護時,必須每次都對其進行補加。另外,發電機軸承的補加劑量一定要按要求數量加入,不可過多,防止太多后擠入電機繞組,使電機燒壞。
定期維護的功能測試主要有過速測試,緊急停機測試,液壓系統各元件定值測試,振動開關測試,扭纜開關測試。還可以對控制器的極限定值進行一些常規測試。
定期維護除以上三大項以外,還要檢查液壓油位,各傳感器有無損壞,傳感器的電源是否可靠工作,閘片及閘盤的磨損情況等方面。
2.日常排故維護
風機在運行當中,也會出現一些故障必須到現場去處理,這樣我們就可順便進行一下常規維護。首先要仔細觀察風機內的安全平臺和梯子是否牢固,有無連接螺栓松動,控制柜內有無糊味,電纜線有無位移,夾板是否松動,扭纜傳感器拉環是否磨損破裂,偏航齒的潤滑是否干枯變質,偏航齒輪箱、液壓油及齒輪箱油位是否正常,液壓站的表計壓力是否正常,轉動部件與旋轉部件之間有無磨損,看各油管接頭有無滲漏,齒輪油及液壓油的濾清器的指示是否在正常位置等。第二是聽,聽一下控制柜里是否有放電的聲音,有聲音就可能是有接線端子松動,或接觸不良,須仔細檢查,聽偏航時的聲音是否正常,有無干磨的聲響,聽發電機軸承有無異響,聽齒輪箱有無異響,聽閘盤與閘墊之間有無異響,聽葉片的切風聲音是否正常。第三,清理干凈自己的工作現場,并將液壓站各元件及管接頭擦凈,以便于今后觀察有無泄漏。
雖然上述的常規維護項目并不是很*,但我們只要每次都能做到認真、仔細,一定能防止出現故障隱患,提高設備的完好率和可利用率。
要想運行維護好風力發電機組,在平時還要對風機相關理論知識進行深入地研究和學習,認真做好各種維護記錄并存檔,對庫存的備件進行定時清點,對各類風機的多發性故障進行深入細致分析,并力求對其做出有效預防。只有防患于未然,才是我們運行維護的高境界。
基本信息
作發電機運行的同步電機。是一種常用的交流發電機。在現代電力工業中,它廣泛用于水力發電、火力發電、核能發電以及柴油機發電。由于同步發電機一般采用直流勵磁,當其單機獨立運行時,通過調
節勵磁電流,能方便地調節發電機的電壓。若并入電網運行,因電壓由電網決定,不能改變,此時調節勵磁電流的結果是調節了電機的功率因數和無功功率。
同步發電機的定子、轉子結構與同步電機相同,一般采用三相形式,只在某些小型同步發電機中電樞繞組采用單相。
工作特性
表征同步發電機性能的主要是空載特性和負載運行特性。這些特性是用戶選用發電機的重要依據。
空載特性
發電機不接負載時,電樞電流為零,稱為空載運行。此時電機定子的三相繞組只有勵磁電流If感生出的空載電動勢E0(三相對稱),其大小隨If的增大而增加。但是,由于電機磁路鐵心有飽和現象,所以兩者不成正比(圖1)。反映空載電動勢E0與勵磁電流If關系的曲線稱為同步發電機的空載特性。
電樞反應
當發電機接上對稱負載后,電樞繞組中的三相電流會產生另一個旋轉磁場,稱電樞反應磁場。其轉速正好與轉子的轉速相等,兩者同步旋轉。
同步發電機的電樞反應磁場與轉子勵磁磁場均可近似地認為都按正弦規律分布。它們之間的空間相位差取決于空載電動勢E0與電樞電流I之間的時間相位差。電樞反應磁場還與負載情況有關。當發電機的負載為電感性時,電樞反應磁場起去磁作用,會導致發電機的電壓降低;當負載呈電容性時,電樞反應磁場起助磁作用,會使發電機的輸出電壓升高。
負載運行特性
主要指外特性和調整特性。外特性是當轉速為額定值、勵磁電流和負載功率因數為常數時,發電機端電壓U與負載電流I之間的關系,如圖2所示。調整特性是轉速和端電壓為額定值、負載功率因數為常數時,勵磁電流If與負載電流I之間的關系,如圖3所示。圖2中還顯示出電阻性、電容性和電感性3種負載的情況。由于電樞反應磁場影響的不同,三者的曲線也不一樣。在外特性中,從空載到額定負載時電壓的變化程度稱為電壓變化率△U,常用百分數表示為
同步發電機的電壓變化率約為20~40%。一般工業和家用負載都要求電壓保持基本不變。為此,隨著負載電流的增大,必須相應地調整勵磁電流。圖3所示為 3種不同性質負載下的調整特性。雖然調整特性的變化趨勢與外特性正好相反,對于感性和純電阻性負載,它是上升的,而在容性負載下,一般是下降的。
高速同步發電機
因大多數發電機與原動機同軸聯動,火電廠都用高速汽輪機作原動機,所以汽輪發電機通常用高轉速的2極電機,其轉速達3000轉/分(在電網頻率為60赫時,為3600轉/分)。核電站多用4極電機,轉速為1500轉/分(當電網頻率為60赫時,為1800轉/分)。為適應高速、高功率要求,高速同步發電機在結構上一是采用隱極式轉子,二是設置專門的冷卻系統。
①隱極式轉子:外表呈圓柱形,在圓柱表面開槽以安放直流勵磁繞組,并用金屬槽楔固緊,使電機具有均勻的氣隙。由于高速旋轉時巨大的離心力,要求轉子有很高的機械強度。隱極式轉子一般由高強度合金鋼整塊鍛成,槽形一般為開口形,以便安裝勵磁繞組。在每一個極距內約有1/3部分不開槽,形成大齒;其余部分的齒較窄,稱做小齒。大齒中心即為轉子磁極的中心。有時大齒也開一些較小的通風槽,但不嵌放繞組;有時還在嵌線槽底部銑出窄而淺的小槽作為通風槽。隱極式轉子在轉子本體軸向兩端還裝有金屬的護環和中心環。護環是由高強度合金制成的厚壁圓筒,用以保護勵磁繞組端部不至被巨大的離心力甩出;中心環用以防止繞組端部的軸向移動,并支撐護環。此外,為了把勵磁電流通入勵磁繞組,在電機軸上還裝有集電環和電刷。
②冷卻系統:由于電機中能量損耗和電機的體積成正比,它的量級與電機線度量級的三次方成比例,而電機散熱面的量級只是電機線度量級的二次方。因此,當電機尺寸增大時(受材料限制,增大電機容量就得加大其尺寸),電機每單位表面上需要散發的熱量就會增加,電機的溫升將會提高。在高速汽輪發電機中,離心力將使轉子表面和轉子中心孔表面產生巨大的切向應力,轉子直徑越大,這種應力也越大。因此,在鍛件材料允許的應力極限范圍內,2極汽輪發電機的轉子本體直徑不能超過1250毫米。大型汽輪發電
機要增大單機容量,只有靠增加轉子本體的長度(即用細長的轉子)和提高電磁負荷來解決。目前,轉子長度可達8米,已接近極限。要繼續提高單機容量,只能是提高電機的電磁負荷。這使大型汽輪發電機的發熱和冷卻問題變得特別突出。為此,已研制出多種冷卻系統。對于50000千瓦以下的汽輪發電機,多采用閉路空氣冷卻系統,用電機內的風扇吹拂發熱部件降溫。對于容量為5~60萬千瓦的發電機,廣泛使用氫冷。氫氣(純度99%)的散熱性能比空氣好,用它來取代空氣不僅散熱效果好,而且可使電機的通風摩擦損耗大為降低,從而能顯著提高發電機的效率。但是,采用氫冷必須有防爆和防漏措施,這使電機結構更為復雜,也增加了電極材料的消耗和成本。此外,還可采用液體介質冷卻,例如水的相對冷卻能力為空氣的50倍,帶走同樣的熱量,所需水的流量比空氣小得多。因此,在線圈里采用一部分空心導線,導線中通水冷卻,就可以大大降低電機溫升,延緩絕緣老化,增長電機壽命。1956年,英國*臺12000千瓦定子線圈水內冷汽輪發電機。1958年,中國由浙江大學、上海電機廠首先研制成臺定、轉子線圈都采用水內冷的 12000千瓦雙水內冷汽輪發電機,為這種冷卻方式奠定了基礎。世界一些國家在大容量電機中也廣泛采用水內冷技術,并制造出了幾十萬到一百多萬千瓦的巨型發電機。除了水冷外,液體冷卻介質還可使用變壓器油,其相對導熱能力約為水的40%,絕緣性能好,可將發電機額定電壓提高到幾萬伏,從而節約了升壓變壓器的投資。近年來,還在研究用氟利昂作為冷卻介質的蒸發冷卻技術。氟利昂絕緣好,很容易氣化,利用其氣化潛熱來冷卻電機,是一種有意義的探索方向。
低速同步發電機
多數由較低速度的水輪機或柴油機驅動。電機磁極數由4極到60極,甚至更多。對應的轉速為1500~100轉/分及以下。由于轉速較低,一般都采用對材料和制造工藝要求較低的凸極式轉子。
凸極式轉子的每個磁極常由1~2毫米厚的鋼板疊成,用鉚釘裝成整體,磁極上套有勵磁繞組(圖4)。勵磁繞組通常用扁銅線繞制而成。磁極的極靴上還常裝有阻尼繞組。它是一個由極靴阻尼槽中的裸銅條和焊在兩端的銅環形成的一個短接回路。磁極固定在轉子磁軛上,磁軛由鑄鋼鑄成。凸極式轉子可分為臥式和立式兩類。大多數同步電動機、同步調相機和內燃機或沖擊式水輪機拖動的發電機,都采用臥式結構;低速、大容量水輪發電機則采用立式結構。
臥式同步電機的轉子主要由主磁極、磁軛、勵磁繞組、集電環和轉軸等組成。其定子結構與異步電機相似。立式結構必須用推力軸承承擔機組轉動部分的重力和水向下的壓力。大容量水輪發電機中,此力可高達四、五十兆牛(約相當于四、五千噸物體的重力),所以這種推力軸承的結構復雜,加工工藝和安裝要求都很高。按照推力軸承的安放位置,立式水輪發電機分為懸吊式和傘式兩種。懸吊式的推力軸承放在上機架的上部或中部,在轉速較高、轉子直徑與鐵心長度的比值較小時,機械上運行較穩定。傘式的推力軸承放在轉子下部的下機架上或水輪機頂蓋上。負重機架是尺寸較小的下機架,可節約大量鋼材,并能降低從機座基礎算起的發電機和廠房高度。
同步發電機的并聯運行 同步發電機絕大多數是并聯運行,并網發電的。各并聯運行的同步發電機必須頻率、電壓的大小和相位都保持一致。否則,并聯合閘的瞬間,各發電機之間會產生內部環流,引起擾動,嚴重時甚至會使發電機遭受破壞。但是,兩臺發電機在投入并聯運行以前,一般說來它們的頻率與電壓的大小和相位是不會*相同的。為了使同步發電機能投入并聯運行,首先必須有一個同步并列的過程。同步并列的方法可分為準同步和自同步兩種。同步發電機在投入并聯運行以后,各機負載的分配決定于發電機的轉速特性。通過調節原動機的調速器,改變發電機組的轉速特性,即可改變各發電機的負載分配,控制各發電機的發電功率。而通過調節各發電機的勵磁電流,可以改變各發電機無功功率分配和調節電網的電壓。
準同步并列
將已加勵磁的待投運發電機通過調節其原動機的轉速和改變該發電機的勵磁,使其和運行中的發電機的頻率差不超過0.1~0.5%。在兩機電壓相位差不超過10°的瞬間進行合閘并聯,兩者即可自動牽入同步運行。準同步并列的操作可以手動,也可以借自動裝置完成。
自同步并列
把待投入并聯的發電機轉速調到接近電網的同步轉速,在未加勵磁的條件下就合閘并聯,然后再加入勵磁,依靠發電機和電網之間出現的環流及相應產生的電磁轉矩把發電機迅速牽入同步。采用自同步并列時,由于減少了調節發電機轉速、電壓和選擇合閘瞬間所需的時間,所以并列的過程較快,特別適宜于電力系統事故情況下機組的緊急投入。但是此法在并列合閘瞬間的電流沖擊比較大,會使電網電壓短時下降,電機繞組端部承受較大的電磁力。
在日常生活中我們用交流發電機來供用電設備使用時,常發生用電設備不能正常工作的情況,其原因是發電機輸出的交流電不夠穩定,這時候需要電力穩壓器來穩定電壓,也就是我們日常生活中常用到的交流穩壓電源,交流穩壓電源能使發電機的輸出電壓精度穩定到我們用電設備正常工作所允許的范圍。
交流發電機構造
交流發電機的構造稍顯復雜。但是不論它是單相還是三相,都是由下列幾個主要部分組成:
⑴激磁部分,包括激磁機和磁場部分。
⑵電樞部分。
⑶機殼部分,包括裝置備部分的鐵架和機座。
異步發電機又稱“感應發電機”。利用定子與轉子間氣隙旋轉磁場與轉子繞組中感應電流相互作用的一種交流發電機。其轉子的轉向和旋轉磁場的轉向相同,但轉速略高于旋轉磁場的同步轉速。常用作小功率水輪發電機。
交流勵磁發電機又被人們稱之為雙饋發電機
.交流勵磁發電機由于轉子方采用交流電壓勵磁,使其具有靈活的運行方式,在解決電站持續工頻過電壓、變速恒頻發電、抽水蓄能電站電動-發電機組的調速等問題方面有著傳
統同步發電機*的*性。交流勵磁發電機主要的運行方式有以下三種:1) 運行于變速恒頻方式;2) 運行于無功大范圍調節的方式;3) 運行于發電-電動方式。
隨著電力系統輸電電壓的提高,線路的增長,當線路的傳輸功率低于自然功率時,線路和電站將出現持續的工頻過電壓.為改善系統的運行特性,不少技術*的國家,在6"世紀A"年代初開始研究異步發電機在大電力系統中的應用問題,并認為大系統采用異步發電機后,可提高系統的穩定性,可靠性和運行的經濟性.
異步發電機由于維護方便,穩定性好,常用作并網運行的小功率水輪發電機。當用原動機將異步電機的轉子順著磁場旋轉方向拖動,并使其轉速超過同步轉速時,電機就進入發電機運行,并把原動機輸入的機械能轉變成電能送至電網。這時電機的勵磁電流取自電網。
異步發電機也可以并聯電容,靠本身剩磁自行勵磁,獨立發電(見圖),這時發電機的電壓與頻率由電容值、原動機轉速和負載大小等因素決定。當負載改變,一般要相應地調節并聯的電容值,以維持電壓穩定。由于異步電機并聯電容時,不需外加勵磁電源就可獨立發電,故在負荷比較穩定的場合,有可取之處。例如可用作農村簡易電站的照明電源或作為備用電源等。
參考資料編輯區域